Quantitative T₂ mapping as a biomarker of neuropathology resulting from acute organophosphate intoxication in a rat model

Alita Jesal D Almeida^{1,2}, Brad A. Hobson³, Valerie A. Porter^{1,2}, Joel R. Garbow⁵, Pamela J. Lein⁴ and Abhijit J. Chaudhari^{2,3} ¹Biomedical Engineering; ²Radiology; ³Center for Molecular and Genomic Imaging; ⁴Molecular Biosciences, University of California, Davis; ⁵Radiology, Washington University St Louis

Objective

To evaluate brain T_2 maps as a potential quantitative biomarker in organophosphate (OP)-intoxicated rats to evaluate the effectiveness of therapeutics for attenuating OP-induced neuropathology.

Background

- OP nerve agents such as chemical warfare agents and OP pesticides represent a major societal public health issue.
- Acute OP intoxication triggers life threatening seizures and long-term neurologic consequences, including neuronal necrosis, edema, neuroinflammation, blood brain barrier dysfunction, and hemorrhage.
- Magnetic resonance imaging (MRI) T_2 (spin-spin) relaxation time constants are impacted by these pathologies.

• Conventional T_2 -weighted and diffusion MRI can interrogate brain lesions over time in a rat model of acute intoxication by OPs. However, quantification is not straightforward.

Hypothesis: T_2 -mapping (T_2 decay quantification) will provide valuable information that would:

- 1. Characterize neuropathology resulting from OP-intoxication; and
- 2. Provide biomarkers to evaluate the effectiveness of therapeutics for attenuating OP-induced neuropathology.

	Atropine	Treatments:				
	Sulfate	Midazolam [1.8 mg/kg]				
DFP	(2 mg/kg),	and/or				
(4mg/	2-PAM,	Allopregnanolone				
kg)	(25 mg/kg)	[24 mg/kg]	·			
			Magne	etic Resc	onance li	maging
+	ł	<u>+ 1</u>				
+ 0m	+ 1m	40m	Group	Day 3	Day 7	Day 28
+ 0m	+ 1m	<u>40m</u> 40m	Group VEH	Day 3 4	Day 7 4	Day 28 5
+ Om	+ 1m	40m H	Group VEH DFP	Day 3 4 10	Day 7 4 10	Day 28 5 12
+ Om	+ 1m	40m 40m	Group VEH DFP MDZ	Day 3 4 10 11	Day 7 4 10 11	Day 28 5 12 7
+ Om	t 1m	40m	Group VEH DFP MDZ ALO	Day 3 4 10 11 9	Day 7 4 10 11 9	Day 28 5 12 7 10

Figure 2: (A) VEH slice illustrating 3 out of the 15 TE's (B) T₂-weighted anatomical scans (left) and the corresponding T_2 maps (right) of animals from Day 3 with color bar in ms;

- VEH T₂ values were within the range reported in the literature
- \Rightarrow voxel-wise- H: 53.8 ms, PC: 57.86 ms
- \Rightarrow regional- H: 54.3 ms, PC: 55.24 ms
- In general, T_2 values were longest on day 3 and decreased with time.
- OP-intoxicated rats (DFP group) had the longest T₂ values \Rightarrow voxel-wise- H: 57.23 ms, PC: 71.21 ms
- \Rightarrow regional- H: 57.4 ms, PC: 59.09 ms
- All interventions resulted in a reduction in average T_2 values compared ulletto the DFP group (p<0.05)
 - \Rightarrow voxel-wise- H: 54.02 ms, PC: 62.37 ms
 - \Rightarrow regional- H: 54.5 ms, PC: 55.44 ms

Methods

Figure 1: Experimental paradigm and overlay of ROIs - hippocampus (cyan) and piriform cortex (yellow) on a representative T_2 -weighted anatomical scan.

Animals and treatments: Adult Sprague Dawley rats were imaged at days 3, 7 and 28 after OP (using diisopropylfluorophosphate, DFP) intoxication. Rats were from one of the following groups:

- > VEH (n=13): Vehicle controls
- > **DFP** (n=32): DFP-exposed animals
- > MDZ (n=29): DFP + midazolam (benzodiazepine anticonvulsant)
- > ALO (n=28): DFP + allopregnanolone (a neurosteroid) > **DUO** (n=28): DFP + MDZ + ALO

Imaging Acquisition and Processing:

- T2-weighted 7T MRI scans were acquired using a rat brain phased array coil and a spin-echo pulse sequence with 15 echo times (TEs).
- Manual delineation of the hippocampus (H) and piriform cortex (PC) as regions-of-interest (ROIs) given their significance as targets of acute OP intoxication.
- Mono-exponential curve fitting in MATAB using the equation: y = 1

• The pattern of distribution of T_2 values was relatively uniform in regions across days and groups. The voxel-wise quantification showed a larger variation in T₂ values within ROIs than regional quantification, suggestive of intraregional heterogeneity of neuronal damage.

 $a.\exp(-x/h)$ was performed on MR images at all TEs, such that 'x': TE, 'y' : signal intensity, 'b' : sought T₂ relaxation time, and 'a': constant representing signal gain or attenuation by the scanner and proton density, respectively. Curve fitting using 2 approaches:

- **1. Voxel-wise quantification:** curve fitting of intensity-TE curves for each voxel, providing a voxel-wise map of T_2 values
- **2. Regional quantification:** curve fitting to average voxel intensity values in each ROI at each TE and a curve fit to estimate T_2 value for each ROI.

Acknowledgements

This work is supported by the National Institutes of Health via grants U54 NS079202 and R21 AG064599.

52 57 52 50 03 07 28 03 07 28 03 07 28 03 07 28 03 07 28 03 07 28 03 07 28 03 07 28 03 07 28 03 07 28 Day Day

Figure 3: Distribution of T_2 values for the hippocampus and piriform cortex based on voxelwise (top row) and regional (bottom row) quantification methods, arranged by treatment group and time post exposure.

Conclusions

This study demonstrates the potential of T_2 mapping as a quantifiable biomarker to longitudinally track neuropathology following OP-intoxication, and to assess the impact of therapies.

Future work will include validation of the methods against histology and diffusion MRI metrics.

ALO

ALO

DUO

DUO